
	

C++ is Fun – Part 11	

at	
 Turbine/Warner	
 Bros.!	

Russell	
 Hanson	

Syllabus	

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files – April 8-10
4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game AI algorithms April 15-17
Project 1 Due – April 17
5) More AI: search, heuristics, optimization, decision trees, supervised/unsupervised
learning – April 22-24
6) Game API and/or event-oriented programming, model view controller, map reduce
filter – April 29, May 1
7) Basic threads models and some simple databases SQLite May 6-8
8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15
9) How to download an API and learn how to use functions in that API, Windows
Foundation Classes May 20-22
10) Designing and implementing a simple game in C++ May 27-29
11) Selected topics – Gesture recognition & depth controllers like the Microsoft
Kinect, Network Programming & TCP/IP, OSC June 3-5
12) Working on student projects - June 10-12
Final project presentations Project 3/Final Project Due June 12

Using	
 the	
 Virtual	
 JoyS<ck	
 and	

Keyboard	
 direc<onal	
 controls	
 with	

App	
 Game	
 Kit	

8.3 Virtual Joysticks

•  What is a virtual joystick?
– A simulated joystick that you can display in your

program and that the user can interact with
•  How many can you create?

– The AGK allows you to create up to 4 virtual
joysticks

•  How do you use them?
– Virtual joysticks are controlled using the mouse or

other pointing device

8.3 Virtual Joysticks

•  How do you add a virtual joystick?
– Call the agk::AddVirtualJoystick function
– Passing the following arguments:

•  The index number you want to assign the virtual joystick
•  The virtual joystick’s center X-coordinate
•  The virtual joystick’s center Y-coordinate
•  The virtual joystick’s size (diameter of a circle)

– For example:
• agk::AddVirtualJoystick(1,50,50,50);

8.3 Virtual Joysticks

•  How do you change a virtual joystick’s
position?
– Call agk::SetVirtualJoystickPosition
– Passing the following arguments:

•  The virtual joystick’s index number
•  The virtual joystick’s new center X-coordinate
•  The virtual joystick’s new center Y-coordinate

– For example:
– agk::SetVirtualJoystickPosition(1,100,100);

8.3 Virtual Joysticks

•  How do you change a virtual joystick’s size?
– Call agk::SetVirtualJoystickSize

Passing the following arguments:
•  The virtual joystick’s index number
•  The virtual joystick’s new size

– For example:
• agk::SetVirtualJoystickSize(1,200);

8.3 Virtual Joysticks

•  How do you change the transparency of a
virtual joystick?
– Call agk::SetVirtualJoystickAlpha

Passing the following arguments:
•  The virtual joystick’s index number
•  A value (0 – 255) for the alpha channel

– For example:
• agk::SetVirtualJoystickAlpha(1,255);

8.3 Virtual Joysticks

•  How do you enable / disable a virtual joystick?
– Call agk::SetVirtualJoystickActive
– Passing the following arguments:

•  The virtual joystick’s index number
•  A value indicating if the virtual joystick is to be active

–  0 will set the virtual joystick as inactive
–  1 will activate the inactive virtual joystick

•  For example:
– agk::SetVirtualButtonActive(1,0);// disable
– agk::SetVirtualButtonActive(1,1);// enable

8.3 Virtual Joysticks

•  How do you hide or show a virtual joystick?
– Call agk::SetVirtualJoystickVisible
– Passing the following arguments:

•  The virtual joystick’s index number
•  A value indicating virtual joystick’s visibility

–  0 will hide the virtual joystick (but it remains active)
–  1 will show the previously hidden virtual joystick

•  For example:
– agk::SetVirtualJoystickVisible(1,0);// hide
– agk::SetVirtualJoystickVisible(1,1);// show

8.3 Virtual Joysticks

•  How do you change a virtual joystick’s
images?
– Make sure the images you want to use are located in

the My Documents à AGK à template folder
– Load the new images and then call the following

functions to apply the changes:
• agk::SetVirtualJoystickImageOuter

–  Pass the index number of the virtual joystick
–  Pass the index number of the virtual joystick’s outer image

• agk::SetVirtualJoystickImageInner
–  Pass the index number of the virtual joystick
–  Pass the index number of the virtual joystick’s inner image

8.3 Virtual Joysticks

– Here is a summary of the steps you must take to
change a virtual joystick’s images:

•  Load the new inner and outer joystick images
•  Set the virtual joystick’s new outer image
•  Set the virtual joystick’s new inner image

– For example:

8.3 Virtual Joysticks

•  How do you delete an existing virtual joystick?
– Determine if the virtual joystick exists and delete it

•  First, call agk::GetVirtualJoystickExists
–  Passing the index number of the joystick you want to check
–  Returns 1 if the joystick exists or 0 if it does not exist

•  Then call agk::DeleteVirtualJoystick
–  Passing the index number of the joystick you want to delete

•  For example:

8.3 Virtual Joysticks

– What is a virtual joystick’s dead zone?
•  Area around the joystick’s center that affects the distance

you have to move the joystick before it registers input
– How do you change a joystick’s the dead zone?

•  Call agk::SetVirtualJoystickDeadZone
–  Passing the virtual joystick’s index number
–  A floating-point value between 0 and 1for the dead zone

»  A value of 0 would be very sensitive
»  A value of 1 would totally disable the joystick
»  The default value is 0.15

–  For example:
» agk::SetVirtualJoystickDeadZone(1,0.25);

8.3 Virtual Joysticks

•  How do you get a virtual joystick’s input?
–  For the X-axis, call agk::GetVirtualJoystickX
–  For the Y-axis, call agk::GetVirtualJoystickY

•  What parameters do these functions accept?
–  The virtual joystick’s index number

•  What values do these functions return?
–  A floating-point value from -1.0 to 1.0 or 0 if not moving

•  What causes the return values to be different?
–  Positive values are returned when moving down or right
–  Negative values are returned when moving up or left
–  A value of zero is returned if the joystick is in the dead zone

Program 8-5 (VirtualJoystick, part 1/2)

Program 8-5 (VirtualJoystick, part 2/2)

Class Exercise:
VirtualJoystick
folder in Google
Drive

// This program demonstrates a virtual joystick.
// Includes, namespace and prototypes
#include "template.h"
using namespace AGK;
app App;
// Constants
const int SCREEN_WIDTH = 640;
const int SCREEN_HEIGHT = 480;
const int SPRITE_INDEX = 1;
const int JOY_INDEX = 1;
const float JOY_SIZE = 100.0;
// Begin app, called once at the start
void app::Begin(void){
 // Set the window title.
 agk::SetWindowTitle("Virtual Joystick");
 // Set the virtual resolution.
 agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_HEIGHT);
 // Create the sprite.
 agk::CreateSprite(SPRITE_INDEX, "fish.png");
 // Calculate the position of the virtual joystick.
 float joyX = SCREEN_WIDTH / 2;
 float joyY = SCREEN_HEIGHT - JOY_SIZE / 2;
 // Add the virtual joystick.
 agk::AddVirtualJoystick(JOY_INDEX, joyX, joyY, JOY_SIZE);
}
// Main loop, called every frame
void app::Loop (void){
 // Get the joystick input.
 float joystickX = agk::GetVirtualJoystickX(JOY_INDEX);
 float joystickY = agk::GetVirtualJoystickY(JOY_INDEX);
 // Get the sprite position.
 float spriteX = agk::GetSpriteX(SPRITE_INDEX);
 float spriteY = agk::GetSpriteY(SPRITE_INDEX);
 // Calculate how far the sprite will move.
 float moveX = spriteX + joystickX;
 float moveY = spriteY + joystickY;
 // Set the sprite position.
 agk::SetSpritePosition(SPRITE_INDEX, moveX, moveY);
 // Refresh the screen.
 agk::Sync();
}
// Called when the app ends
void app::End (void)
{
}

8.4 The Keyboard

•  How do you move objects with the keyboard
arrow keys?
– For the X-axis, call agk::GetDirectionX
– For the Y-axis, call agk::GetDirectionY

•  What values do these functions return?
–  A floating-point value from -0.9 to 0.9 or 0 if not pressed

•  What causes the return values to be different?
–  Positive values are returned when pressing down or right
–  Negative values are returned when pressing up or left

– Program 8-6, for example

Program 8-6 (DirectionKeys, partial listing)

8.4 The Keyboard

– How do you respond to specific key presses?
•  Similar to responding to virtual button and mouse presses
•  Call any one of the following three functions:

– agk::GetRawKeyPressed (Was the key pressed?)
– agk::GetRawKeyState (Was the key held down?)
– agk::GetRawKeyReleased (Was the key released?)

•  All three functions accept a single argument:
–  A value (0 – 255) representing the key code for the key
–  For example:

8.4 The Keyboard

– How do you know which key code values to use?
•  Many of the key codes are defined by the AGK

–  AGK defined key codes start with AGK_KEY_

8.4 The Keyboard

•  How do you determine the last key that was
pressed?
– Call the agk::GetRawLastKey function

•  Returns the key code for the last key that was pressed
– Program 8-7, for example

// This program demonstrates direction keys.
// Includes, namespace and prototypes
#include "template.h"
using namespace AGK;
app App;
// Constants
const int SCREEN_WIDTH = 640;
const int SCREEN_HEIGHT = 480;
const int SPRITE_INDEX = 1;

// Begin app, called once at the start
void app::Begin(void)
{
 // Set the window title.
 agk::SetWindowTitle("Direction Keys");
 // Set the virtual resolution.
 agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_HEIGHT);
 // Create the sprite.
 agk::CreateSprite(SPRITE_INDEX, "fish.png");
}
// Main loop, called every frame
void app::Loop (void)
{
 // Get the direction as input from the keyboard.
 float directionX = agk::GetDirectionX();
 float directionY = agk::GetDirectionY();

 // Get the sprite position.
 float spriteX = agk::GetSpriteX(SPRITE_INDEX);
 float spriteY = agk::GetSpriteY(SPRITE_INDEX);

 // Calculate how far the sprite will move.
 float moveX = spriteX + directionX;
 float moveY = spriteY + directionY;

 // Set the sprite position.
 agk::SetSpritePosition(SPRITE_INDEX, moveX, moveY);

 // Refresh the screen.
 agk::Sync();
}
// Called when the app ends
void app::End (void)
{
}

Class Exercise:
DirectionKeys
folder in Google
Drive

Program 8-7 (LastKeyPressed, partial
listing)

Woah crazy online game using Unity
Web Player!! (http://unity3d.com/
webplayer/)

Class	
 Templates	
 vs.	
 Func<on	

Templates	

Function Templates

•  Function template: a pattern for a function
that can work with many data types

•  When written, parameters are left for the
data types

•  When called, compiler generates code for
specific data types in function call

Function Template Example
template <class T>

T times10(T num)
{
 return 10 * num;
}

template
prefix

generic
data type

type
parameter

What gets generated when
times10 is called with an int:

What gets generated when times10 is
called with a double:

int times10(int num)
{
 return 10 * num;
}

double times10(double num)
{
 return 10 * num;
}

Function Template Example

template <class T>

T times10(T num)
{
 return 10 * num;
}

•  Call a template function in the usual manner:
 int ival = 3;
 double dval = 2.55;
 cout << times10(ival); // displays 30
 cout << times10(dval); // displays 25.5

Function Template Notes

•  Can define a template to use multiple data types:
 template<class T1, class T2>

•  Example:
template<class T1, class T2> // T1 and T2 will be

double mpg(T1 miles, T2 gallons) // replaced in the

{ // called function

 return miles / gallons // with the data

} // types of the

 // arguments

Function Template Notes

•  Function templates can be overloaded Each
template must have a unique parameter list

 template <class T>

 T sumAll(T num) ...

 template <class T1, class T2>

 T1 sumall(T1 num1, T2 num2) ...

Function Template Notes

•  All data types specified in template prefix
must be used in template definition

•  Function calls must pass parameters for
all data types specified in the template
prefix

•  Like regular functions, function templates
must be defined before being called

Function Template Notes

•  A function template is a pattern
•  No actual code is generated until the function

named in the template is called
•  A function template uses no memory

•  When passing a class object to a function
template, ensure that all operators in the
template are defined or overloaded in the class
definition

Where to Start
When Defining Templates
•  Templates are often appropriate for

multiple functions that perform the same
task with different parameter data types

•  Develop function using usual data types
first, then convert to a template:
– add template prefix
– convert data type names in the function to a

type parameter (i.e., a T type) in the template

Class Templates

•  Classes can also be represented by
templates. When a class object is created,
type information is supplied to define the
type of data members of the class.

•  Unlike functions, classes are instantiated
by supplying the type name (int, double,
string, etc.) at object definition

Class Template Example
template <class T>
class grade
{
 private:
 T score;
 public:
 grade(T);
 void setGrade(T);
 T getGrade()
};

Class Template Example

•  Pass type information to class template
when defining objects:

 grade<int> testList[20];

 grade<double> quizList[20];

•  Use as ordinary objects once defined

Class Templates and
Inheritance
•  Class templates can inherit from other class templates:

template <class T>
class Rectangle
 { ... };
template <class T>
class Square : public Rectangle<T>
 { ... };

•  Must use type parameter T everywhere base class
name is used in derived class

More Details of the Standard
Template Library

Standard Template Library

•  Two important types of data structures in
the STL:
– containers: classes that stores data and

imposes some organization on it

–  iterators: like pointers; mechanisms for
accessing elements in a container

Containers

•  Two types of container classes in STL:
– sequence containers: organize and access

data sequentially, as in an array. These
include vector, dequeue, and list

– associative containers: use keys to allow
data elements to be quickly accessed.
These include set, multiset, map, and
multimap

Iterators

•  Generalization of pointers, used to
access information in containers

•  Four types:
–  forward (uses ++)
– bidirectional (uses ++ and --)
–  random-access
–  input (can be used with cin and istream

objects)
– output (can be used with cout and
ostream objects)

Algorithms
•  STL contains algorithms implemented as

function templates to perform operations
on containers.

•  Requires algorithm header file
•  algorithm includes

binary_search count
for_each find
find_if max_element
min_element random_shuffle
sort and others

Exceptions to the norm

•  Exceptions in C++

Exceptions

•  Indicate that something unexpected has
occurred or been detected

•  Allow program to deal with the problem in
a controlled manner

•  Can be as simple or complex as program
design requires

Exceptions - Terminology

•  Exception: object or value that signals an
error

•  Throw an exception: send a signal that an
error has occurred

•  Catch/Handle an exception: process the
exception; interpret the signal

Exceptions – Key Words

•  throw – followed by an argument, is used to
throw an exception

•  try – followed by a block { }, is used to
invoke code that throws an exception

•  catch – followed by a block { }, is used to
detect and process exceptions thrown in
preceding try block. Takes a parameter that
matches the type thrown.

Exceptions – Flow of Control

1)  A function that throws an exception is called from
within a try block

2)  If the function throws an exception, the function
terminates and the try block is immediately exited. A
catch block to process the exception is searched for in
the source code immediately following the try block.

3)  If a catch block is found that matches the exception
thrown, it is executed. If no catch block that matches
the exception is found, the program terminates.

Exceptions – Example (1)

 // function that throws an exception
 int totalDays(int days, int weeks)
 {
 if ((days < 0) || (days > 7))
 throw "invalid number of days";
 // the argument to throw is the
 // character string
 else
 return (7 * weeks + days);
 }

Exceptions – Example (2)

 try // block that calls function
 {
 totDays = totalDays(days, weeks);
 cout << "Total days: " << days;
 }
 catch (char *msg) // interpret

 // exception
 {
 cout << "Error: " << msg;
 }

Exceptions – What Happens

1)  try block is entered. totalDays function is
called

2)  If 1st parameter is between 0 and 7, total
number of days is returned and catch block is
skipped over (no exception thrown)

3)  If exception is thrown, function and try block
are exited, catch blocks are scanned for 1st
one that matches the data type of the thrown
exception. catch block executes

From Program 16-1

From Program 16-1

What Happens in theTry/Catch
Construct

What if no exception is thrown?

Exceptions - Notes

•  Predefined functions such as new may
throw exceptions

•  The value that is thrown does not need to
be used in catch block.
–  in this case, no name is needed in catch

parameter definition
– catch block parameter definition does need

the type of exception being caught

Exception Not Caught?

•  An exception will not be caught if
–  it is thrown from outside of a try block
–  there is no catch block that matches the data

type of the thrown exception
•  If an exception is not caught, the program

will terminate

Exceptions and Objects

•  An exception class can be defined in a
class and thrown as an exception by a
member function

•  An exception class may have:
– no members: used only to signal an error
– members: pass error data to catch block

•  A class can have more than one exception
class

Contents of Rectangle.h (Version1) (Continued)

Class Exercise: Rectangle exceptions

Folder “Rectangle Version 1” in Google Drive

// Implementation file for the Rectangle class.
#include "Rectangle.h"

//***
// setWidth sets the value of the member variable width. *
//***

void Rectangle::setWidth(double w)
{
 if (w >= 0)
 width = w;
 else
 throw NegativeSize();
}

//***
// setLength sets the value of the member variable length. *
//***

void Rectangle::setLength(double len)
{
 if (len >= 0)
 length = len;
 else
 throw NegativeSize();
}

// This program demonstrates Rectangle class exceptions.
#include <iostream>
#include "Rectangle.h"
using namespace std;

int main()
{
 int width;
 int length;

 // Create a Rectangle object.
 Rectangle myRectangle;

 // Get the width and length.
 cout << "Enter the rectangle's width: ";
 cin >> width;
 cout << "Enter the rectangle's length: ";
 cin >> length;

 // Store these values in the Rectangle object.
 try
 {
 myRectangle.setWidth(width);
 myRectangle.setLength(length);
 cout << "The area of the rectangle is "
 << myRectangle.getArea() << endl;
 }
 catch (Rectangle::NegativeSize)
 {
 cout << "Error: A negative value was entered.\n";
 }
 cout << "End of the program.\n";

 return 0;
}

// Specification file for the Rectangle class
#ifndef RECTANGLE_H
#define RECTANGLE_H

class Rectangle
{
 private:
 double width; // The rectangle's width
 double length; // The rectangle's length
 public:
 // Exception class
 class NegativeSize
 { }; // Empty class declaration

 // Default constructor
 Rectangle()
 { width = 0.0; length = 0.0; }

 // Mutator functions, defined in Rectangle.cpp
 void setWidth(double);
 void setLength(double);

 // Accessor functions
 double getWidth() const
 { return width; }

 double getLength() const
 { return length; }

 double getArea() const
 { return width * length; }
};
#endif

Program 16-2 (Continued)

What Happens After catch
Block?

•  Once an exception is thrown, the program
cannot return to throw point. The function
executing throw terminates (does not
return), other calling functions in try block
terminate, resulting in unwinding the stack

•  If objects were created in the try block and
an exception is thrown, they are destroyed.

Nested try Blocks
•  try/catch blocks can occur within an

enclosing try block
•  Exceptions caught at an inner level can be

passed up to a catch block at an outer level:
 catch ()
 {
 ...
 throw; // pass exception up
 } // to next level

HW	
 for	
 Monday	
 (pick	
 2)	

1)	

	

	

	

	

	

	

	

2)	

	

	

	

	

3)	

Lunar	
 Lander	
 media	
 are	
 in	
 folder	
 “Space-­‐HW-­‐Media”	

On	
 Google	
 Drive	

3)	

	

	

	

	

	

	

	

	

	

	

	

4)	

5)	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

6)	
 Write	
 a	
 class	
 that	
 handles	
 a	
 GamePlayer,	
 or	
 lunar	
 lander	
 excep<on,	
 like	
 the	

rectangle	
 excep<on	
 in	
 class.	

