C++isrfun-Part ||
at Turbine/Warner Bros.!

Syllabus

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files — April 8-10

4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game Al algorithms April 15-17

Project 1 Due — April 17

5) More Al: search, heuristics, optimization, decision trees, supervised/unsupervised
learning — April 22-24

6) Game API and/or event-oriented programming, model view controller, map reduce
filter — April 29, May 1

7) Basic threads models and some simple databases SQLite May 6-8

8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15

9) How to download an API and learn how to use functions in that API, Windows
Foundation Classes May 20-22

10) Designing and implementing a simple game in C++ May 27-29

11) Selected topics — Gesture recognition & depth controllers like the Microsoft
Kinect, Network Programming & TCP/IP, OSC June 3-5

12) Working on student projects - June 10-12

Final project presentations Project 3/Final Project Due June 12

Using the Virtual JoyStick and
Keyboard directional controls with
App Game Kit

8.3 Virtual Joysticks

What 1s a virtual joystick?

A simulated joystick that you can display in your
program and that the user can interact with

How many can you create?
The AGK allows you to create up to 4 virtual
joysticks

How do you use them?

Virtual joysticks are controlled using the mouse or
other pointing device

8.3 Virtual Joysticks

How do you add a virtual joystick?
Call the agk: :AddVirtualJoystick function
Passing the following arguments:

The index number you want to assign the virtual joystick
The virtual joystick’s center X-coordinate

The virtual joystick’s center Y-coordinate

The virtual joystick's size (diameter of a circle)

For example:
agk::AddVirtualJoystick(1l,50,50,50);

Figure 8-7 The size of a virtual joystick is based on the diameter of a circle

8.3 Virtual Joysticks

How do you change a virtual joystick s
position?
Call agk: :SetVirtualJoystickPosition
Passing the following arguments:
The virtual joystick’s index number

The virtual joystick’'s new center X-coordinate
The virtual joystick’'s new center Y-coordinate

For example:
agk::SetVirtualJoystickPosition(1,100,100) ;

Irtual Joysticks

- How do you change a virtual joystick s size?
— Call agk: :SetVirtualJoystickSize
Passing the following arguments:
* The virtual joystick's index number
* The virtual joystick's new size
— For example:
*agk::SetVirtualJdoystickSize (1,200);

8.3 Virtual Joysticks

How do you change the transparency of a
virtual joystick?
Call agk: :SetVirtualJoystickAlpha
Passing the following arguments:

The virtual joystick’s index number
A value (0 — 255) for the alpha channel

For example:
agk::SetVirtualJdoystickAlpha (1, 255);

8.3 Virtual Joysticks

How do you enable / disable a virtual joystick?
Call agk: :SetVirtualJoystickActive
Passing the following arguments:

The virtual joystick's index number
A value indicating if the virtual joystick is to be active

0 will set the virtual joystick as inactive
1 will activate the inactive virtual joystick
For example:
agk::SetVirtualButtonActive (1) // disable
agk::SetVirtualButtonActive (1 ;// enable

8.3 Virtual Joysticks

How do you hide or show a virtual joystick?
Call agk: :SetVirtualJoystickVisible
Passing the following arguments:

The virtual joystick's index number
A value indicating virtual joystick’s visibility
0 will hide the virtual joystick (but it remains active)
1 will show the previously hidden virtual joystick
For example:

agk::SetVirtualJoystickVisible (1) // hide
agk::SetVirtualJoystickVisible (1 ;// show

8.3 Virtual Joysticks

How do you change a virtual joystick s
1mages”?

Make sure the images you want to use are located in
the My Documents 2 AGK => template folder

Load the new 1mages and then call the following
functions to apply the changes:
agk::SetVirtualJdoystickImageOuter

Pass the index number of the virtual joystick

Pass the index number of the virtual joystick” s outer image
agk::SetVirtualJoystickImagelnner

Pass the index number of the virtual joystick

Pass the index number of the virtual joystick s inner image

8.3 Virtual Joysticks

— Here 1s a summary of the steps you must take to
change a virtual joystick's images:
 Load the new inner and outer joystick images
» Set the virtual joystick’s new outer image

* Set the virtual joystick's new inner image

— For example:

agk::LoadImage(l, "myOuterJoystickImage.png");
agk::LoadImage(2, "myInnerJoystickImage.png");

agk::SetVirtualJdoystickImageOuter(1l, 1);
agk::SetVirtualJdoystickImageInner(1l, 2);

8.3 Virtual Joysticks

How do you delete an existing virtual joystick?

Determine if the virtual joystick exists and delete 1t
First, call agk: :GetVirtualJoystickExists

Passing the index number of the joystick you want to check

Returns 1 if the joystick exists or 0 if it does not exist
Then call agk: :DeleteVirtualJoystick

Passing the index number of the joystick you want to delete
For example:

if(agk::GetVirtualJoystickExists(2))
{

agk::DeleteVirtualJoystick(2);

}

8.3 Virtual Joysticks

What is a virtual joystick’'s dead zone?

Area around the joystick’s center that affects the distance
you have to move the joystick before it registers input

How do you change a joystick's the dead zone?
Call agk: :SetVirtualJoystickDeadZone

Passing the virtual joystick’'s index number
A floating-point value between 0 and 1for the dead zone
A value of 0 would be very sensitive
A value of 1 would totally disable the joystick
The default value 1s 0.15
For example:
agk::SetVirtualJdoystickDeadZone (1,0.25);

8.3 Virtual Joysticks

How do you get a virtual joystick’s input?
For the X-axis, call agk: :GetVirtualJoystickX
For the Y-axis, call agk: :GetVirtualJoystickY

What parameters do these functions accept?
The virtual joystick” s index number
What values do these functions return?
A floating-point value from -1.0 to 1.0 or 0 if not moving
What causes the return values to be different?
Positive values are returned when moving down or right

Negative values are returned when moving up or left

A value of zero is returned if the joystick is in the dead zone

Program 8-5 (Virtual Joystick)

1 // This program demonstrates a virtual joystick.
2

3 // Includes, namespace and prototypes
4 #include "template.h"

5 using namespace AGK;

6 app App;

7

8 // Constants

9 const int SCREEN_WIDTH = 640;

10 const int SCREEN_HEIGHT = 480;

11 _const_int SPRITE INDEX _=.1i .,

120 const int JOY_INDEX = 1; 1

13 const float JOY SIZE = 100.0; |

14 O NN B BN NN NN NN NN NN BN BN BN BN BN BN BN BN BN BN B

15 // Begin app, called once at the start
16 void app::Begin(void)

17 {

18 // Set the window title.

19 agk::SetWindowTitle("Virtual Jovstick"):

20

21 // Set the virtual resolution.

22 agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_HEIGHT) ;

23

24 // Create the sprite.

25 agk::CreateSprite(SPRITE_INDEX, "fish.png");

26 e
27 1 // calculate the position of the virtual joystick. |
28 : float joyX = SCREEN WIDTH / 2; :
29 j float joyY = SCREEN HEIGHT - JOY SIZE / 2; I
30 | |
31 : // Add the virtual joystick. :

32 | agk::AddvirtualJoystick(JOY_INDEX, joyX, joyY, JOY_SIZE);)

33 } e ——

34

35 // Main loop, called every frame
36 void app::Loop (void)

37 ¢
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 }
56

I // Get the joystick input. 1
I float joystickX = agk::GetvVirtualJoystickX(JOY_ INDEX); :
| float joystickY = agk::GetVirtualJoystickY(JOY_INDEX); |

// Get the sprite position.

float spriteX = agk::GetSpriteX(SPRITE_INDEX);

float spriteY = agk::GetSpriteY(SPRITE_INDEX);
// Calculate how far the sprite will move.
float moveX = spriteX + joystickX;
float moveY = spriteY + joysticky;

// Set the sprite position.
agk::SetSpritePosition(SPRITE_INDEX, moveX, moveY);
// Refresh the screen.

agk::Sync();

57 // Ccalled when the app ends
58 void app::End (void)

59
60 }

Figure 8-8 Example output for Program 8-5

-

Virtual Joystick {:] oy X

// This program demonstrates a virtual joystick.

// Includes, namespace and prototypes I E . .
Finclude "emplate dSS C£Xerclse.
using namespace AGK;

app App;

[} [|
VirtualJoystick
const int SCREEN_ WIDTH = 640;
const int SCREEN_ HEIGHT = 480;
const int SPRITE_INDEX = 1; -
const int JOY INDEX =1; O e r I n Oog e
const float JOY _SIZE =100.0;
// Begin app, called once at the start

[|
void app::Begin(void){ D rl Ve
// Set the window title.
agk::SetWindowTitle(" Virtual Joystick");
// Set the virtual resolution.
agk::SetVirtualResolution(SCREEN WIDTH, SCREEN HEIGHT);
// Create the sprite.
agk::CreateSprite(SPRITE_INDEX, "fish.png");
// Calculate the position of the virtual joystick.
float joyX = SCREEN WIDTH / 2;
float joyY = SCREEN HEIGHT - JOY SIZE/2;
// Add the virtual joystick.
agk::AddVirtualJoystick(JOY INDEX, joyX, joyY, JOY_SIZE);
H
// Main loop, called every frame
void app::Loop (void){
/I Get the joystick input.
float joystickX = agk::GetVirtualJoystickX(JOY_INDEX);
float joystickY = agk::GetVirtualJoystickY (JOY INDEX);
/I Get the sprite position.
float spriteX = agk::GetSpriteX(SPRITE_INDEX);
float spriteY = agk::GetSpriteY(SPRITE_INDEX);
// Calculate how far the sprite will move.
float moveX = spriteX + joystickX;
float moveY = spriteY + joystickY;
/I Set the sprite position.
agk::SetSpritePosition(SPRITE _INDEX, moveX, moveY);
// Refresh the screen.
agk::Sync();
H
// Called when the app ends
void app::End (void)
{
H

8.4 The Keyboard

How do you move objects with the keyboard
arrow keys?

For the X-axis, call agk: :GetDirectionX

For the Y-axis, call agk: :GetDirectionY
What values do these functions return?
A floating-point value from -0.9 to 0.9 or 0 if not pressed
What causes the return values to be different?

Positive values are returned when pressing down or right

Negative values are returned when pressing up or left

Program 8-6, for example

irectionKeys,

26 // Main loop, called every frame
27 void app::Loop (void)

28 {
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 }

| // Get the direction as input from the keyboard.
: float directionX = agk::GetDirectionX();
: float directionY = agk::GetDirection¥Y();
L

// Get the sprite position.
float spriteX = agk::GetSpriteX(SPRITE_ INDEX);
float spriteY = agk::GetSpriteY(SPRITE INDEX);

e o o o o e .

: // Calculate how far the sprite will move. :

| float moveX = spriteX + directionX; :

: float moveY = spriteY + directionY; :

b o o o e e S S RN R R N S R N N S S N N S S -
// Set the sprite position.
agk::SetSpritePosition(SPRITE INDEX, moveX, moveY);

// Refresh the screen.
agk::Sync();

8.4 The Keyboard

— How do you respond to specific key presses?
 Similar to responding to virtual button and mouse presses

» Call any one of the following three functions:
— agk: :GetRawKeyPressed (Was the key pressed?)
— agk: :GetRawKeyState (Was the key held down?)
— agk: :GetRawKeyReleased (Was the key released?)

« All three functions accept a single argument:

— A value (0 — 255) representing the key code for the key
— For example:

int tabPressed = agk::GetRawKeyPressed(AGK KEY TAB);
int tabDown = agk::GetRawKeyboardState(AGK KEY TAB);
int tabReleased = agk::GetRawKeyReleased(AGK KEY TAB);

— How do you know which key code values to use?

* Many of the key codes are defined by the AGK
— AGK defined key codes start with AGK_KEY

Table 8-1 Key codes defined by the AGK

Name Key

AGK_KEY_ UP Up Arrow Key
AGK_KEY DOWN Down Arrow Key
AGK_KEY LEFT Left Arrow Key
AGK_KEY RIGHT Right Arrow Key
AGK_KEY SPACE Spacebar Key
AGK_KEY TAB Tab Key

AGK_KEY ENTER Enter Key

e Keyboar

* How do you determine the last key that was
pressed?
— Call the agk: : GetRawLastKey function
« Returns the key code for the last key that was pressed
— Program 8-7, for example

/I Constants

const int SCREEN_WIDTH = 640;
const int SCREEN HEIGHT = 480;

const int SPRITE INDEX =1; fOlder in Google

// Begin app, called once at the start

void app::Begin(void) -
| Drive

/I Set the window title.
agk::SetWindowTitle("Direction Keys");
/I Set the virtual resolution.
agk::SetVirtualResolution(SCREEN WIDTH, SCREEN HEIGHT);
// Create the sprite.
agk::CreateSprite(SPRITE INDEX, "fish.png");

}

// Main loop, called every frame

void app::Loop (void)

{
/I Get the direction as input from the keyboard.
float directionX = agk::GetDirectionX();
float directionY = agk::GetDirectionY();

// Get the sprite position.
float spriteX = agk::GetSpriteX(SPRITE INDEX);
float spriteY = agk::GetSpriteY(SPRITE INDEX);

// Calculate how far the sprite will move.
float moveX = spriteX + directionX;
float moveY = spriteY + directionY;

/I Set the sprite position.
agk::SetSpritePosition(SPRITE INDEX, moveX, moveY);

// Refresh the screen.
agk::Sync();
}
// Called when the app ends
void app::End (void)
{
1

23 // Main loop, called every frame
24 void app::Loop (void)

25 {
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 3}

U NN N S SN N SN NN N N NN N SN SN NN SN SN SN SN BN BN BN BN SN SN BN N N SN SN SN SN SN BN BN BN B S S S S 2
I// Get the key code of the last key that was pressed.l
Ilnt keycode = agk::GetRawLastKey(); I

__ .
I// Determine which message to display.

Isw1tch(keycode)
{
case AGK _KEY SPACE:
agk::Print("You pressed the spacebar.");
break;

agk::Print("You pressed the enter key.");
break;

default:
agk::Print("Press the spacebar or enter key.");

[
[
[
[
[
[
[
[
[
[
[
case AGK KEY ENTER: :
[
[
[
[
[
[
:
break; 1

[

1

// Refresh the screen.
agk::Sync();

VWoah crazy online game using Unity
Web Player!! (http://unity3d.com/

sound: on

Class Templates vs. Function
Templates

Function Templates

* Function template: a pattern for a function
that can work with many data types

* When written, parameters are left for the
data types

* When called, compiler generates code for
specific data types in function call

Function Template Example

template
template <class T><« prefix
T, timeslO (T num;\ .
generic
{ data type
return 10 *
} type
parameter

What gets generated when What gets generated when times10 is
times10 is called with an int: | called with a double:

int timeslO (int num) double timesl0 (double num)
{

{
return 10 * num;

} }

return 10 * num;

Function Template Example

template <class T>

T timesl0 (T num)

{

return 10 * num;

}
« Call a template function in the usual manner:
int 1val = 3;
double dval = 2.55;
cout << timeslO0(ival); // displays 30
cout << timeslO0(dval); // displays 25.5

Function Template Notes

« Can define a template to use multiple data types:
template<class T1l, class T2>

 Example:

template<class T1, class T2> // Tl and T2 will be
double mpg (Tl miles, T2 gallons) // replaced in the

{ // called function
return miles / gallons // with the data
} // types of the

// arguments

Function Template Notes

* Function templates can be overloaded Each
template must have a unique parameter list

template <class T>

T sumAll (T num)

template <class T1, class T2>
Tl sumall (Tl numl, T2 num?2)

Function Template Notes

 All data types specified in template prefix
must be used in template definition

* Function calls must pass parameters for
all data types specified in the template
prefix

 Like regular functions, function templates
must be defined before being called

Function Template Notes

* A function template is a pattern

* No actual code is generated until the function
named in the template is called

* A function template uses no memory

 When passing a class object to a function
template, ensure that all operators in the
template are defined or overloaded in the class
definition

Where to Start
When Defining Templates

 Templates are often appropriate for
multiple functions that perform the same
task with different parameter data types

* Develop function using usual data types
first, then convert to a template:
— add template prefix

— convert data type names in the function to a
type parameter (i.e., a T type) in the template

Class Templates

» Classes can also be represented by
templates. When a class object is created,
type information is supplied to define the
type of data members of the class.

» Unlike functions, classes are instantiated
by supplying the type name (int, double,
string, etc.) at object definition

Class Template Example

template <class T>
class grade
{
private:
T score;
public:
grade (T) ;
vold setGrade (T);
T getGrade ()

¥

Class Template Example

» Pass type information to class template
when defining objects:

grade<int> testList[20];

grade<double> quizList[20];

» Use as ordinary objects once defined

Class Templates and
Inheritance

« Class templates can inherit from other class templates:
template <class T>
class Rectangle
{ ... 1}
template <class T>
class Square : public Rectangle<T>

L oco Js

 Must use type parameter T everywhere base class
name is used in derived class

More Details of the Standard
Template Library

Standard Template Library

* Two important types of data structures in
the STL.:

— containers: classes that stores data and
Imposes some organization on it

— iterators: like pointers; mechanisms for
accessing elements in a container

Containers

* Two types of container classes in STL.:

— sequence containers: organize and access
data sequentially, as in an array. These
Include vector, dequeue, and 1ist

— associative containers: use keys to allow
data elements to be quickly accessed.
These include set, multiset, map, and
multimap

lterators

* Generalization of pointers, used to
access information in containers

* Four types:
— forward (uses ++)
— bidirectional (uses ++ and --)
— random-access

—input (can be used with cin and istream
objects)

— output (can be used with cout and
ostream objects)

Algorithms

« STL contains algorithms implemented as
function templates to perform operations
on containers.

* Requires algorithm header file
* algorithm includes

binary search count

for each find
find 1f max element
min element random shuffle

sort and others

Exceptions to the norm

« Exceptions in C++

Exceptions

* Indicate that something unexpected has
occurred or been detected

* Allow program to deal with the problem in
a controlled manner

* Can be as simple or complex as program
design requires

Exceptions - Terminology

« EXxception: object or value that signals an
error

 Throw an exception: send a signal that an
error has occurred

« Catch/Handle an exception: process the
exception; interpret the signal

Exceptions — Key Words

« throw — followed by an argument, is used to
throw an exception

« try — followed by a block { 1}, is used to
iInvoke code that throws an exception

« catch — followed by a block { 1}, is used to
detect and process exceptions thrown in
preceding try block. Takes a parameter that
matches the type thrown.

Exceptions — Flow of Control

1) A function that throws an exception is called from
within a try block

2) If the function throws an exception, the function
terminates and the try block is immediately exited. A
catch block to process the exception is searched for in
the source code immediately following the try block.

3) If a catch block is found that matches the exception
thrown, it is executed. |f no catch block that matches
the exception is found, the program terminates.

Exceptions — Example (1)

// function that throws an exception
int totalDays (int days, 1nt weeks)
{
1f ((days < 0) || (days > 7))
throw "i1nvalid number of days";
// the argument to throw is the
// character string
else
return (7 * weeks + days);

Exceptions — Example (2)

try // block that calls function

{
totDays = totalDays (days, weeks);

cout << "Total days: " << days;
}

catch (char *msg) // interpret
// exception

cout << "Error: " << msg;

Exceptions — \WWhat Happens

1) try block is entered. totalDays function is
called

2) If 1st parameter is between 0 and 7, total
number of days is returned and catch block is
skipped over (no exception thrown)

3) If exception is thrown, function and try block
are exited, catch blocks are scanned for 1st
one that matches the data type of the thrown
exception. catch block executes

From Program 16-1

int main()

Q {
10 int numl, num2; // To hold two numbers
11 double quotient; // To hold the quotient of the numbers
12
13 // Get two numbers.
14 cout << "Enter two numbers: ";
15 cin >> numl >> num2;
16
17 // Divide numl by num2 and catch any
18 // potential exceptions.
19 try
20 {
21 quotient = divide(numl, num2);
22 cout << "The quotient is " << quotient << endl;
23 }
24 catch (char *exceptionString)
25 {
26 cout << exceptionString;
27 }

2C cout << "End of the program.\n";
3 (return 0;

From Program 16-1

//****‘k*‘k***************‘k********‘k************

// The divide function divides numerator by *
// denominator. If denominator is zero, the *

// function throws an exception. *
//**

double divide(int numerator, int denominator)

{
if (denominator == 0)
throw "ERROR: Cannot divide by zero.\n";
return static_cast<double>(numerator) / denominator;
}

Program Output with Example Input Shown in Bold

Enter two numbers: 12 2 [Enter]
The quotient is 6
End of the program.

Program Output with Example Input Shown in Bold

Enter two numbers: 12 O [Enter]
ERROR: Cannot divide by zero.
End of the program.

What Happens in the Try/Catch
Construct

try
{
———» quotient = divide(numl, num2);
__then this statement ——® cout << "The quotient is " << quotient << endl;

If this statement
throws an exception...

is skipped. }
catch (char *exceptionString)
If the exception is a string, {
the program jumps to cout << exceptionString;
this catch clause. }

?ﬁe;]tr:je;]amh block is —— cout << "End of the program.\n";
inished, the program return 0;

resumes here.

What if no exception is thrown?

try
{
quotient = divide(numl, num2);
cout << "The quotient is " << quotient << endl;
— }
catch (char *exceptionString)
If no exception is thrown in the {
try block, the program jumps cout << exceptionString;
to the statement that immediately }
follows the try/catch construct.

- cout << "End of the program.\n";
return 0;

Exceptions - Notes

* Predefined functions such as new may
throw exceptions

 The value that is thrown does not need to
be used In catch block.

— In this case, no name is needed in catch
parameter definition

— catch block parameter definition does need
the type of exception being caught

Exception Not Caught?

* An exception will not be caught if
— it is thrown from outside of a try block

— there is no catch block that matches the data
type of the thrown exception

* If an exception is not caught, the program
will terminate

Exceptions and Objects

* An exception class can be defined in a
class and thrown as an exception by a

member function

* An exception class may have:
— no members: used only to signal an error
— members: pass error data to catch block

* A class can have more than one exception
class

Contents of Rectangle.h (Version 1)

1

// Specification file for the Rectangle class
¢ifndef RECTANGLE H
tdefine RECTANGLE H

class Rectangle

{
private:
double width; // The rectangle's width
double length; // The rectangle's length
public:

// Exception class
class NegativeSize
{ }; // Empty class declaration

// Default constructor
Rectangle ()
{ width = 0.0; length = 0.0; }

// Mutator functions, defined in Rectangle.cpp
void setWidth(double);
void setLength(double);

Contents of Rectangle.h (Version1) (Continued)

23 // Accessor functions
24 double getWidth() const
25 { return width; }

27 double getLength() const
28 { return length; }

30 double getArea() const

31 { return width * length; }
A
23 #endif

Contents of Rectangle.cpp (Version 1)

// Implementation file for the Rectangle class.
¢include "Rectangle.h"

//***

// setWidth sets the wvalue of the member wvariable width. *
//***

void Rectangle::setWidth (double w)

{
if (w >= 0)
width = w;
else
throw NegativeSize();
}

//***

// setLength sets the value of the member variable length. *
//***

void Rectangle::setLength(double len)
{
if (len >= 0)
length = len;
else
throw NegativeSize();

Program 16-2

10
11
12

// This program demonstrates Rectangle
¢include <iostream>

¢include "Rectangle.h"
using namespace std;

int main()

{
int width;
int length;

// Create a Rectangle object.
Rectangle myRectangle;

class exceptions.

Program 16-2 (continued)

14
15
16
17
18
19

21

// Get the width and length.

cout << "Enter the rectangle's width: ";
cin >> width;

cout << "Enter the rectangle's length: ";
cin >> length;

// Store these values in the Rectangle object.
try
{
myRectangle.setWidth(width);
myRectangle.setLength(length);
cout << "The area of the rectangle is "
<< myRectangle.getArea() << endl;

}
catch (Rectangle::NegativeSize)
{
cout << "Error: A negative value was entered.\n";
}

cout << "End of the program.\n";

return 0;

/I Implementation file for the Rectangle class.
#include "Rectangle.h"

1l
/I setWidth sets the value of the member variable width.
1l

void Rectangle::setWidth(double w)

if (w>=0)
width = w;
else

throw NegativeSize();

}

1
/I setLength sets the value of the member variable length. *
1

void Rectangle::setLength(double len)
{
if (len >=0)
length = len;
else
throw NegativeSize();

/I Specification file for the Rectangle class
#ifndef RECTANGLE_H
#define RECTANGLE_H

class Rectangle
{
private:
double width; // The rectangle's width
double length; // The rectangle's length
public:
/l Exception class
class NegativeSize
{} /[l Empty class declaration

/I Default constructor
Rectangle()
{ width = 0.0; length = 0.0; }

Class Exercise: Rectangle exceptions

Folder “Rectangle Version 1”7 in Google Drive

/I This program demonstrates Rectangle class exceptions.
#include <iostream>

#include "Rectangle.h"

using namespace std;

int main()

{
int width;
int length;

/I Create a Rectangle object.
Rectangle myRectangle;

/I Get the width and length.

cout << "Enter the rectangle's width: ";
cin >> width;

cout << "Enter the rectangle's length: ";
cin >> length;

/I Store these values in the Rectangle object.
try
{
myRectangle.setWidth(width);
myRectangle.setLength(length);
cout << "The area of the rectangle is "
<< myRectangle.getArea() << endl;

catch (Rectangle::NegativeSize)

{

cout << "Error: A negative value was entered.\n";

}

cout << "End of the program.\n";

return O;

Program 16-2 (Continued)

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 10 [Enter]
Enter the rectangle's length: 20 [Enter]
The area of the rectangle is 200

End of the program.

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 5 [Enter]
Enter the rectangle's length: -5 [Enter]
Error: A negative value was entered.
End of the program.

What Happens After catch
Block"?

* Once an exception is thrown, the program
cannot return to throw point. The function
executing throw terminates (does not
return), other calling functions in try block
terminate, resulting in unwinding the stack

* |f objects were created in the try block and
an exception is thrown, they are destroyed.

Nested try Blocks

 try/catch blocks can occur within an
enclosing try block

* Exceptions caught at an inner level can be
passed up to a catch block at an outer level:
catch ()

{

throw; // pass exception up
} // to next level

HW for Monday (pick 2)

Lunar Lander media are in folder “Space-HW-Media”
On Google Drive

1) Lunar Lander, Part 1

The book’s online resources (downloadable from www.pearsonhighered.com/
gaddis) provide images of a spacecraft and a background drawing of the moon’s
surface. Write a program that initially displays the spacecraft on the moon’s sur-
face. When the user presses the spacebar, the spacecraft should slowly lift off the
surface and continue to lift as long as the spacebar is held down. When the user
releases the spacebar, the spacecraft should slowly descend back down toward the
surface and stop when it reaches the surface.

Lunar Lander, Part 2

Enhance the lunar lander program (see Programming Exercise 4) so the user can
press the left or right arrow keys, along with the spacebar, to slowly guide the
spacecraft to the left or right. If the spacebar is not pressed, however, the left and
right arrow keys should have no effect.

2)

Lunar Lander, Part 3

3) Enhance the lunar lander program (see Programming Exercises 4 and 5) so the
spacecraft initially appears on one side of the screen, and a landing pad appears
on the opposite side. The user should try to fly the spacecraft and guide it so that
it lands on the landing pad. If the spacecraft successfully lands on the landing pad,
display a message congratulating the user.

3)

4)

Short Answer

1

2
3
4
S
6
7

oo

10
11
12

What is a throw point?

What is an exception handler?

Explain the difference between a try block and a catch block.

What happens if an exception is thrown, but not caught?

What is “unwinding the stack”?

What happens if an exception is thrown by a class’s member function?

How do you prevent a program from halting when the new operator fails to allocate
memory?

Why is it more convenient to write a function template than a series of overloaded
functions?

Why must you be careful when writing a function template that uses operators such
as [] with its parameters?

What is a container? What is an iterator?
What two types of containers does the STL provide?
What STL algorithm randomly shuffles the elements in a container?

Fill-in-the-Blank

13

14.

153

16

17
18

19
20
21

22
237

The line containing a throw statement is known as the

The block contains code that directly or indirectly might cause an excep-
tion to be thrown.

The block handles an exception.

When writing function or class templates, you use a(n) to specify a

generic data type.
The beginning of a template is marked by a(n)

When defining objects of class templates, the you wish to pass into the
type parameter must be specified.

A(n) template works with a specific data type.
A(n) container organizes data in a sequential fashion similar to an array.
A(n) container uses keys to rapidly access elements.

are pointer-like objects used to access data stored in a container.

The exception is thrown when the new operator fails to allocate the
requested amount of memory.

Find the Error

Each of the following declarations or code segments has errors. Locate as many as possible.

5)

47. catch
{

quotient = divide(numl, num2);
cout << "The quotient is " << quotient << endl;

}
try (string exceptionString)

{
cout << exceptionString;

48. try

quotient = divide(numl, num2);

}
cout << "The quotient is " << quotient << endl;
catch (string exceptionString)

{

cout << exceptionString;
}

49. template <class T>
T square(T number)

{
return T * T;

}

50. template <class T>
int square(int number)

{
return number * number;

}

51. template <class T1, class T2>
Tl sum(T1l x, T1 y)

{
return x + y;
}
6) Write a class that handles a GamePlayer, or lunar lander exception, like the

rectangle exception in class.

